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ABSTRACT: Graphene plasmons are rapidly emerging as a
viable tool for fast electrical manipulation of light. The
prospects for applications to electro-optical modulation,
optical sensing, quantum plasmonics, light harvesting, spectral
photometry, and tunable lighting at the nanoscale are further
stimulated by the relatively low level of losses and high degree
of spatial confinement that characterize these excitations
compared with conventional plasmonic materials, alongside
the large nonlinear response of graphene. We start with a
general description of the plasmonic behavior of extended
graphene, followed by analytical methods that lead to
reasonably accurate estimates of both the plasmon energies
and the strengths of coupling to external light in graphene nanostructures, including graphene ribbons. Although graphene
plasmons have so far been observed at mid-infrared and longer wavelengths, there are several possible strategies to extend them
toward the visible and near-infrared, including a reduction in the size of the graphene structures and an increase in the level of
doping. Specifically, we discuss plasmons in narrow ribbons and molecular-size graphene structures. We further formulate
prescriptions based on geometry to increase the level of electrostatic doping without causing electrical breakdown. Results are
also presented for plasmons in highly-doped single-wall carbon nanotubes, which exhibit similar characteristics as narrow ribbons
and show a relatively small dependence on the chirality of the tubes. We further discuss perfect light absorption by a single-atom
carbon layer, which we illustrate by investigating arrays of ribbons using fully analytical expressions. Finally, we explore the
possibility of exploiting optically pumped transient plasmons in graphene, whereby the optically heated graphene valence band
can sustain collective plasmon oscillations similar to those of highly doped graphene, and well-defined during the picosecond
time window over which the electron is at an elevated temperature. In brief, we discuss a number of exciting possibilities to
extend graphene plasmons toward the visible and near-infrared spectral regions and toward the ultrafast time domain, thus
configuring a vast range of possibilities for fundamental studies and technological applications.
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Plasmons, the collective oscillations of valence electrons in
conducting materials, possess a number of appealing

properties for photonic technologies,1 the most salient of which
are (1) their small spatial extension compared with the light
wavelength, which has been exploited to achieve improved
imaging resolution;2 (2) their strong interaction with light,
which is evidenced by a centenary tradition of generating colors
through plasmon-supporting metal nanoparticle suspensions;3

and (3) the huge optical enhancements produced by this strong
interaction, which upon external illumination result in near-field
intensities >105 times larger than the incident light intensity, as
inferred from surface-enhanced Raman scattering (SERS)
measurements.4 Control over the spectral and spatial properties
of these collective excitations has advanced at an impressive
pace in recent years.5,6 Equally impressive are their applications
to ultrasensitive detection down to the single-molecule level,7

improved photovoltaics,8 nanoscale photometry,9 cancer
therapy,10 and nonlinear optics,11 among other feats.
Highly doped graphene has recently emerged as a powerful

plasmonic material that combines the appealing properties
noted above with the ability of being electrically tunable. In its

undoped state, the atomically thin carbon layer presents ∼2.3%
broadband absorption12 mediated by excitation of electron−
hole pairs. However, when electrically doped, an optical gap
opens up, the energy of which is proportional to the applied
bias voltage. Gaps nearing 2 eV have been reported.13 A
plasmon band is then showing up in this gap at frequencies that
are highly dependent on the doping level, and consequently,
the optical response is fastly controllable through gated
injection of charge carriers.
Radical variations in the optical absorption features

associated with the excitation of graphene plasmons have
been already demonstrated over a wide spectral range down to
the mid-infrared.14−20 Additionally, these plasmons are highly
confined to small regions compared with the wavelength, as
directly observed through scanning near-field optical micros-
copy.21,22 It should be mentioned that graphene also exhibits
higher-energy plasmons23,24 (>5 eV) of limited tunability,
similar to those in metals, which we will not discuss here. Low-
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energy, tunable plasmons have been observed in extended
graphene,14,16,25−28 graphene ribbons,15,21,22,29,30 disks,18,19,31

rings,19,32 disk stacks,17,32 and holes;20 these observations have
been carried out at IR14,16,19−22,25−29,31 and THz15,17,18,30,32

frequencies, using low-energy electron energy-loss,16,25−28

optical far-field,15,17−20,29−32 and scanning optical near-
field14,21,22 spectroscopies. Strong changes in the graphene
plasmon dispersion due to hybridization with the optical
phonons of a SiC substrate have also been observed.26,29

Besides, graphene magnetoplasmons have been measured at
THz frequencies,18,33 similar to those of conventional two-
dimensional electron gases,34 which can be tuned through
varying the intensity of an externally applied magnetic field.
These findings have stimulated a tremendous activity purposing
to explore and exploit the photonic and plasmonic properties of
graphene, as discussed in recent reviews.35−37

Experimental efforts in graphene plasmonics have been
matched by an extensive wealth of theoretical analyses,
including microscopic quantum descriptions based upon the
random-phase-approximation (RPA) for extended gra-
phene,38,39 narrow ribbons,40,41 and other structures.41,42

Additionally, classical electrodynamic solutions have been
produced for more complex geometries, such as graphene
circuits,43 individual disks and ribbons,44−46 dimers,47,48

periodically patterned layers,49−53 and tips.54

The unique plasmonic behavior of graphene, combined with
its excellent electronic properties,55,56 has triggered a race to
understand the dynamics of hot electrons in this material,57 as

well as the mechanisms leading to inelastic plasmon
attenuation.58−60 Besides these fundamental aspects, graphene
is attracting considerable interest because of its potential
application to optical signal processing,43 light modulation,61

sensing,62 spectral photometry,63,64 quantum optics,44,65 and
nonlinear photonics.66−69 This excitement originates in part in
the large electro-optical response of the atomically thin carbon
layer.14−22 In contrast, conventional plasmonic materials are
traditionally tuned through geometry,5 as only massive amounts
of chemically induced doping can produce observable plasmon
shifts,70 although some promising strategies are being explored
to achieve plasmon tunability in nanoparticles.71

Unfortunately, graphene plasmons have only been observed
at mid-IR and longer wavelengths. Consequently, intense
efforts are currently underway to exploit the graphene tunability
at shorter wavelengths. In this context, exciting results have
been reported on the electro-optical control of extrinsic
plasmons sustained by noble metal nanostructures,72−75 as
well as light propagation in integrated silicon waveguides61 and
photonic crystal cavities,76 on which an electrically pumped
nearby graphene layer can drive observable spectral changes.
Alternative strategies here discussed consist in raising the level
of doping and reducing the size of the graphene structures. We
further explore optically pumped transient plasmons and
excitations in graphene-like molecular structures. Graphene is
also argued to hold great potential both for obtaining exotic
optical behavior, such as complete absorption within an

Figure 1. Graphene electrostatic doping and plasmon dispersion relation. (a) An applied DC electric field, which is for example produced via
backgating, induces doping charges on the graphene. (b) A doping charge density n raises the Fermi level to EF = ℏνFkF, with kF = (πn)1/2, and
consequently, a gap is opened of size 2EF for vertical transitions. (c−e) This optical gap closes down for parallel wave vector transfers k∥ ≥ kF and a
plasmon mode is allowed to exist free from Landau damping in the remaining k∥ < kF region. Here we visualize the gap and the plasmon by
representing the k∥ − ω dependence of the loss function Im{rp} for three different levels of doping in extended free-standing graphene. Two specific
intraband (1) and interband (2) transitions are shown in (d), corresponding to the dashed arrows in (b). (f) Same as (e), but represented as a
function of in-plane wavelength 2π/k∥ rather than parallel wave vector k∥. The light line (dotted curve) and the plasmon dispersion relations in the
Drude (dashed curve) and local-RPA (solid curve) models are shown for comparison. The density plots are obtained using the full RPA conductivity
for graphene38,39 with mobility μ = 2000 cm2/(V s).
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atomically thin layer49 and for implementing quantum-optics
devices in a solid-state environment.77

■ FUNDAMENTALS OF GRAPHENE PLASMONICS

Optical Response and Plasmons in Graphene. Near its
Fermi level, the electronic band structure of graphene is
dominated by two inequivalent singular points in the first
Brillouin zone, each of them consisting of two cones with their
tips touching right at the so-called Dirac points, which coincide
with the Fermi energy of the undoped carbon layer.55,78

Choosing the origin of 2D electron momentum k∥ at one of the
two Dirac points, the electron energy follows a linear dispersion
E ≈ ℏνFk∥, where νF ≈ 106 m/s is the Fermi velocity. Injection
of charge carriers (electrons or holes), through for example
electrical gating13 or chemical doping,79 moves the Fermi
energy to EF ≈ ℏνFkF, where kF = (πn)1/2 is the Fermi wave
vector and n is the concentration of additional carriers (see
Figure 1a,b). Under realistic conditions, electrical gating can be
used to produce EF ∼ 1 eV,13 which corresponds to n ∼ 7 ×
1013 cm−2.
An immediate consequence of doping in graphene is the

opening of an optical gap of size 2EF for vertical transitions (see
Figure 1c−f). We illustrate the opening of this gap by plotting
in Figure 1 a representative loss function for various values of
EF. In particular, we show Im{rp}, where rp is the Fresnel
reflection coefficient for p-polarized light. This function
accounts for the enegy-loss probability when the graphene is
excited by a fast electron,80 but it also illustrates the wave vector
k∥ and frequency ω dependence of the optical excitations in this
material, including the emergence of a plasmon band. It is
useful to realize that retardation effects are negligible over the
region of interest (i.e., k∥ < kF and ℏω < 2EF). Indeed, the
Fermi wavelength is λF = 2π/kF ∼ 4−10 nm for typical values of
EF ∼ 0.4−1 eV, so that the light wavelength (λ0 > 1−3 μm for
ℏω < EF) is much larger than λF and the light line cannot be
distinguished from the vertical k∥ = 0 axis on the scale of Figure
1c−e. In the electrostatic limit, we find

ω π σ
=

−
r

k
1

1 i /(2 )p
(1)

in terms of the graphene conductivity σ(k∥,ω). The density
plots of Figure 1 are obtained using the RPA for σ(k∥,ω),

38,39,78

which accounts for nonlocal effects within linear response
theory,81 using a tight-binding description for the π-band
electron wave functions. As noted above, the gap narrows down
under oblique light incidence (i.e., for k∥ ≠ 0) and it completely
disappears at k∥ = kF. It is precisely in this triangular gap region
where plasmons show up as a distinct absorption feature.
A representation in terms of the in-plane wavelength 2π/k∥

(Figure 1f) corroborates that the plasmons are far apart from
the propagating light modes in the spectral range of interest.
Consequently, we can generally neglect retardation effects in
the analysis of graphene plasmons under high doping
conditions. Actually, those effects cannot be resolved on the
scale of Figure 1, thus justifying the use of the above
electrostatic limit for eq 1. Unfortunately, this also implies
that the coupling of graphene plasmons to propagating light
becomes a challenge, which can however be overcome by
patterning the graphene layer to boost light absorption, as
discussed below.
One expects the k∥ dependence to play a negligible role for

graphene islands of size ≫ λF. This intuition has been recently

confirmed by full RPA calculations for finite graphene
structures,41 which allow us to conclude that we can realistically
model them within the local limit (k∥ = 0). The RPA
conductivity of extended graphene then reduces to the local-
RPA conductivity
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where f E is the electron distribution as a function of energy E,
and we have used the prescription of Mermin82 to locally
conserve electron density when a finite electronic relaxation
time τ is introduced. The first term inside the integral of eq 2
gives the contribution from intraband transitions (i.e., electron
transitions within the same partly filled Dirac cone, see labels
(1) in Figure 1b,d), which at zero temperature (i.e., for f E =
θ(EF − E)) produces the Drude conductivity

σ ω
π ω τ

=
ℏ + −

e iE
i

( ) F
2

2 1 (3)

The second term in eq 2 describes interband transitions
across the optical gap (see labels (2) in Figure 1b,d). For
plasmon energies Ep < EF and large structures compared with
λF, this term can be neglected and eq 3 yields a fairly good
approximation. Additionlly, the intraband term admits an easily
computable expression in the τ → ∞ limit,83,84 which provides
a reasonably accurate correction due to interband polarization
effects and has been extensively used in the analysis of graphene
plasmons.19,44 Throughout this paper, we retain instead the full
finite τ dependence in eq 2, as this becomes relevant under the
extreme doping conditions here discussed, including ultrafast
optical pumping leading to transient plasmons.
The plasmon dispersion relation of extended graphene is

given by the poles of rp (i.e., ksp = iω/(2πσ)). Using eq 3 in this
expression, we find the plasmon wavelength λsp = 2π/Re{ksp} to
be related to the light wavelength λ0 as

λ
λ

α
ω

=
ϵ + ϵ ℏ

E4sp

0 1 2

F

(4)

where α = e2/ℏc ≈ 1/137 is the fine-structure constant. For the
sake of completeness, we have corrected this expression by
adding a factor 2/(ϵ1 + ϵ2) to the right-hand side in order to
account for the effect of dielectric environment when the
graphene is sitting at the planar interface between two
dielectrics of permittivities ϵ1 and ϵ2 (see more details
below). The dashed curve in Figure 1f is obtained from this
expression with ϵ1 = ϵ2 = 1 (self-standing graphene). The
agreement with the RPA plasmon dispersion relation is
excellent at low values of k∥, again confirming the validity of
the local approximation for large structures. Furthermore,
electron−hole-pair excitations can be neglected in the
dynamical interaction between induced charges at distances
larger than a few tens of nanometers, as the plasmon dispersion
relation only enters that region for shorter in-plane wavelengths
2π/k∥ (see Figure 1f). Consequently, electron−hole-pair
excitations should be also negligible in structures of sizes larger
than those distances, in agreement with RPA calculations for
finite graphene islands.41 Incidentally, polarization of interband
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transitions produces a plasmon shift, which is well described by
the local-RPA conductivity (Figure 1f, solid curve).
Optical Losses. In the above expressions, we have

introduced an intrinsic decay rate τ that causes the plasmons
to acquire a finite lifetime and is influenced by several factors,
such as collisions with impurities,60 coupling to optical
phonons,85 and finite-size and edge effects.41 Each of these
mechanisms provides additional momentum needed to break
the mismatch between plasmons and electron−hole-pair
excitations within the gaps of Figure 1. In particular, the DC
Drude model86 permits estimating the impurity-limited lifetime
as τ = μEF/eνF

2, where μ is the mobility. For reference, this
expression predicts τ ≈ 1 ps (i.e., ℏτ−1 ≈ 0.66 meV) for EF = 1
eV and μ = 10,000 cm2/(V s). Although even higher mobilities
have been measured in both suspended87,88 and BN-
supported89 graphene, experimental plasmon studies14−22

have so far reported lower μ values (<2000), thus, demanding
cleaner fabrication methods for graphene patterning and device
fabrication in order to meet the expectation of long-lived
optical modes in defect-free graphene structures. Additionally, a
proper treatment of impurity scattering beyond the Drude
model60 seems to explain the presence of a residual plateau in
the measured losses within the optical gap.58 Moreover,
intrinsic optical phonon losses have been predicted to
dramatically reduce the plasmon lifetime for energies Ep > 0.2
eV,85 in agreement with a recent study of graphene ribbons,29

but in contrast to the observation of narrow plasmons at
energies above 0.3 eV in nanorings.19 Coupling to substrate
phonons is another potential source of losses. Zigzag edges
have also been found to produce dramatic plasmon damping
due to the presence of electronic edge states.41 Quite
differently, armchair nanoislands do not host such edge states,
and therefore, their plasmons are expected to be narrower and
better defined than in zigzag islands.42 For sufficiently small
armchair islands down to molecular sizes, these plasmons can
be even pushed to the visible and near-infrared (vis-NIR).90

Electrostatic Scaling Laws. Because λsp ≪ λ0 (see eq 4),
we can safely neglect retardation and express the optical
response of graphene in terms of an electrostatic potential ϕ.
We consider a homogeneously doped graphene structure of
characteristic size D placed at the planar interface between two
media of permittivities ϵ1 and ϵ2. Although the formalism
presented below applies to any choice of D, it is convenient to
associate it with a characteristic distance, such as the diameter
in a disk, the side in a square, or the width in a ribbon. For
finite arbitrary shapes, one could set D to the square root of the
graphene area. It is then convenient to define a filling function f
that takes the value 1 on the graphene and vanishes elsewhere.
Using dimensionless coordinates θ⃗ = (x/D,y/D) on the
graphene plane, we can write the self-consistent relation

∫ϕ θ ϕ θ η θ
θ θ

θ ϕ θ⃗ = ⃗ + ′⃗
| ⃗ − ′⃗|

∇′· ′⃗ ∇′ ′⃗f( ) ( )
d

( ) ( )ext
2

(5)

where ϕext is the external potential, whereas

η σ ω
ω

=
ϵ + ϵ

i
D

( ) 2

1 2 (6)

is a dimensionless parameter. The integral term in eq 5 is just
the Coulomb potential produced by the induced charge ρ,
which is in turn expressed in terms of the induced current j =
−σf▽ϕ through the continuity equation ρ = (−i/ω)▽·j.
Notice that the bare Coulomb potential 1/r due to a point

charge must be corrected by a factor 2/(ϵ1 + ϵ2) when the
charge is sitting at the interface between two dielectrics. This
factor is simply pulled out in front of the integral in eq 6 as an
exact correction to account for the interface. Incidentally, eq 5
also describes inhomogeneously doped graphene in the Drude
approximation,91 with the spacial dependence of the Fermi
energy transferred into f.
The dependence on frequency, doping level, dielectric

environment, and absolute size of the structure is fully
contained in η. The rest of the elements in eq 5 have a purely
geometrical interpretation. Following a similar approach as for
general electrostatic problems,92 this equation can be recast
into a real-symmetric eigensystem,80 in which the plasmon
resonances are identified with negative real eigenvalues ηj. The
complex plasmon frequencies are then obtained by solving the
equation η = ηj. In particular, using the Drude model (eq 3), we
find ω ≈ ωj − iτ−1/2, with

ω
πη
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Given any geometrical shape, this scaling law allows us to
obtain the plasmon energy for all desired values of EF and D,
provided we know the energy for a specific choice of these
parameters. For example, taking EF = 1 eV and D = 100 nm, the
lowest-order dipole plasmon energy ℏωj is 0.25 eV for a disk of
diameter D and 0.26 eV for a ribbon of width D (dipole mode
across the ribbon, see below).
From the above analysis we can obtain a scaling law for the

polarizability αω of a graphene island by considering an external
potential, −E0x, corresponding to an external field E0 along a
symmetry direction x. We find19

∑α
η ω σ ω

=
− ϵ + ϵ −

ω ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
D

A

i D( 2/ )/( ) ( )/ ( )j

j

j

3

1 2

(8)

where Aj are real, positive, dimensionless coupling coefficients,
which depend on the specific geometry under consideration
(see ref.19 for more details) and can be calculated once and for
all by solving eq 5 and comparing the resulting polarizability
with eq 8. In the σ → 0 limit (weak coupling regime),
substituting ϕext for ϕ in the integral of eq 5, we obtain the sum
rule

∑ =A
A

Dj
j 2

(9)

where A is the graphene area. In the opposite limit (|σ| → ∞),
the graphene behaves as a perfect conductor of polarizability α0,
which allows us to obtain a second sum rule,

∑ η
α

− =
ϵ + ϵ

A
D2( / )

j
j j

0
3

1 2 (10)

In particular, α0/D
3 = 1/6π for a free-standing circular disk.93

Incidentally, assuming that the lowest-energy plasmon domi-
nates the above sums, we find ηj ≈ −2/3π2, which allows us to
analytically predict a plasmon energy of 0.26 eV for the disk
with EF = 1 eV and D = 100 nm, in reasonable agreement with
the numerical value of 0.24 eV quoted above.
Notice that eq 8 can be readily used to obtain the absorption

cross-section of a self-standing structure as σabs = (8π2/
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λ0)Im{αω}. Incidentally, for undoped graphene, the con-
ductivity reduces to σ = e2/4ℏ over a wide spectral range,
leading to

σ πα π
αλ

=
⎡
⎣⎢

⎤
⎦⎥A

g
D8abs

0 (11)

where g(x) = x2(D2/A)∑jAj/(x
2 + 1/ηj

2) is obviously a
monotonically increasing function of x ≈ 0.183D/λ0 (see
Figure 8c). In the small structure limit, we have g(0) = 0
(depletion of absorption), whereas g ≈ 1 for D≫ λ0 in virtue of
eq 9, thus resulting in an absorbance σabs/A ≈ πα, in agreement
with optical measurements of large graphene islands.12

To summarize, the above scaling laws emanate from eq 5,
which provides a complete classical electrostatic description of
graphene in the local approximation, with the size of the system
D, the conductivity σ, and the frequency ω fully embedded
inside the parameter η (eq 6). These laws are expressed in
terms of the dimensionless constants ηj and Aj, which are
independent of size, conductivity, and frequency. Additionally,
the plasmonic response is dominated by a single mode j in
many geometries, such as ribbons (see below), which allows us
to derive rather accurate analytical expressions for the
absorption cross-section, thus emphasizing the power of the
scaling laws.
It should be noted that the above analysis relies on a

description of the graphene as an infinitely thin layer of finite
2D conductivity σ. In practice, classical numerical simulations
have been reported for several geometries by describing the
graphene as a film of finite thickness t43,44,47 and permittivity ϵ
= 1 + 4πiσ/(t ω), so that the problem reduces to solving
Maxwell’s equations, using for example the boundary-element
method (BEM).44,94 Converged results in the t → 0 limit are
obtained with t ∼ 0.3 nm (the interlayer separation of graphite)
for islands above 100 nm in size. However, a small dependence
on t is still observable in smaller islands within this range of
thicknesses. Nonetheless, the plasmon energies only differ by a
small percentage from the t = 0 values in islands as small as 10
nm, for which finite-size quantum effects require moving to
nonclassical methods anyway, such as the TB+RPA (see

Methods). Our numerical estimates of ηj and Aj are obtained
using the above classical description. Incidentally, we also use
an intrinsically t = 0 alternative procedure based upon surface
dipole elements to solve the electrostatic problem for ribbons
in next paragraph (see Methods).

Scaling Laws for Graphene Ribbons. Ribbons, which are
central elements of many graphene plasmonics stud-
ies,15,21,22,29,30,44,45,47,52 deserve a separate discussion. Their
guided modes comprise a fundamental low-energy band of
monopolar character and higher-energy modes of multipolar
nature.45 Using the Drude conductivity (eq 3), we can obtain a
universal dispersion diagram (see Figure 2a and Methods47), in
which the wave vector along the ribbon k∥ is normalized using
the width D.
As ribbons possess infinite area, it is convenient to write their

polarizability per unit length L (in the L → ∞ limit) as

∑α

η ω σ ω
=

′

− ϵ + ϵ −
ω
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D
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i D( 2/ )/( ) ( )/ ( )j

j

j

2

1 2

(12)

Similar to Aj above, the new coefficients A′j = Aj D/L can be
calculated once and for all by comparing this expression with a
numerical solution of the polarizability (see Methods). Under
normal-incidence illumination (k∥ = 0), with polarization as
shown by the inset of Figure 2b, the electrostatic polarizability
of a perfect-conductor ribbon,95 α0/L = D2/16, allows us to
rewrite the sum rule of eq 10 as −∑jηjA′j = 1/16. Likewise, the
sum rule of eq 9 now becomes ∑jA′j = 1. Furthermore, the
absorption spectrum is dominated by coupling to the dipolar
band, so that higher-energy plasmons are hardly excited (see
Figure 2b, solid curve). We conclude that the polarizability is
dominated by the dipolar mode, with A′j = 1 and ηj = −1/16,
according to the preceding discussion. Under this single-mode
approximation and applying the well-known expression for the
absorption cross-section of a self-standing ribbon σabs = (8π2/
λ0)Im{αω}, we find the dipole plasmon to contribute as

Figure 2. Plasmons in individual graphene ribbons. (a) Absorption dispersion diagram showing the plasmons guided along a self-standing graphene
ribbon of width D doped to a Fermi energy EF, obtained with the Drude conductivity (eq 3). The plasmon frequency is normalized to ωg = (e/
ℏ)(EF/πD)

1/2. (b) Absorption cross-section under normal incidence with light polarization as shown by the inset: numerical simulation (solid curve,
see Methods) vs analytical theory (dashed curve, eq 13). The upper inset shows the dipole-plasmon near-electric-field intensity in a plane normal to
the ribbon normalized to the incident intensity for a ribbon width D = 100 nm. The relative intensity is only shown in the 500−5000 range in linear
scale. The intrinsic width is taken as ℏτ−1 = ωg/10.
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where A = DL is the ribbon area and ωg = (e/ℏ)(EF/πD)
1/2 is a

geometrical frequency. (Notice that we are actually calculating
extinction, which should be nearly the same as absorption,
because scattering is negligible for D ≪ λ0.) Despite its
simplicity, this expression is in remarkable agreement with full
numerical simulations both in the position and in the strength
of the dipole plasmon (see Figure 2b). Incidentally, the
correction produced by dielectric environment when the ribbon
is placed at an ϵ1|ϵ2 interface shifts the plasmon energy to

π≈ ϵ + ϵE e E D4 2 /[ ( )]p F 1 2 (14)

The field intensity is enormously enhanced near the ribbon.
For ℏτ−1 = ωg/10 and D = 100 nm, we find a large volume with
an intensity enhancement >500, and even >5000 in a region
that extends up to ∼5 nm away from the graphene edges (see
upper inset to Figure 2b). It is interesting to note that the
maximum intensity enhancement scales as τ2EF/D

3 for a fixed
distance to the ribbon measured in units of the width D.
Guided plasmons in ribbons can be intuitively understood as

the laterally confined plasmons of extended graphene, in which

the in-plane wave vector has to be replaced by (k∥
2 + (mπ/

D)2)1/2, where mπ/D is the transversal wave vector associated
with confinement of multipole m. However, this procedure
overlooks edge effects, which upon comparison with full
numerical simulations, we find to roughly contribute to a ∼10%
reduction in mode frequency. With this correction, we find the
analytical expression (ω/ωg) ≈ 0.9(2π)1/2(k∥

2D2 + m2π2)1/4, in
reasonable agreement with the full electromagnetic simulation
for the two lowest plasmon bands (m = 0, 1, see Figure 2a).

Why Graphene Plasmons Enable Facile Electrical
Tunability? The dramatic changes induced in the optical
response of graphene through varying the concentration of
charge carriers n can be traced back to the peculiar electronic
band structure of this material: because the electronic density of
states vanishes at the Fermi level and the electronic bands show
a linear dispersion, a relatively moderate value of n produces
substantial variations of EF ∝ (n)1/2 (e.g., EF = 0.37 eV for n =
1013 cm−2), leading to the opening of an optical gap ∼2EF,
where plasmons exist without undergoing Landau damping.
Doping levels as high as EF ∼ 1 eV are currently attainable
using top-gate configurations, assisted by a highly polarizable
dielectric spacer.13 The atomic thickness of graphene also
contributes to optimize the effect of doping, in contrast to

Figure 3. Plasmons and optical absorption in narrow graphene ribbons. We present absorption cross-section spectra for self-standing ribbons of both
armchair and zigzag edge configurations calculated with a quantum-mechanical TB-RPA procedure, as detailed elsewhere41 (see Methods). (a)
Spectra of two ribbons of different edges but similar width for several doping levels. (b) Spectra of armchair and zigzag ribbons of similar widths for
EF = 1 eV. (c) Plasmon energy (left scale) and effective charge carrier density (neff, numerically extracted from eq 16; right scale, symbols) as a
function of EF for the armchair ribbon considered in (a). For reference, we also plot neff and n for extended graphene (right scale, solid and dashed
curves, respectively). (d) Same as (c), but as a function of ribbon width D, as extracted from the spectra of (b). The intrinsic plasmon width is set to
ℏτ−1 = 0.1 eV in all cases (i.e., this is equivalent to a mobility of 66 × (EF/eV) cm

2/(V s)).
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thicker materials, because the additional charge is distributed
over a smaller volume.
It is useful to estimate the number of electrons participating

in a plasmonic resonance via the f-sum rule, which has been
shown to possess peculiar properties in graphene.96 This allows
us to quantify the above argument of electronic-density-of-
states vanishing (i.e., the fact that the number of electronic
states that need to be filled by injecting electrons into the layer
in order to substantially raise the Fermi energy is small
compared with noble metals because the electron dispersion
relation is linear and vanishes at the Fermi level of undoped
graphene). In the electrostatic limit, the polarizability αω

satisfies the rigorous relation81 ( f-sum rule)

∫ ω ω α π=ω

∞ e
m

Nd Im{ }
20

2

e
e

(15)

where Ne is the number of electrons in the particle. In practice,
we restrict the range of ω integration to the plasmonic region in
order to find the effective number of electrons contributing to
the plasmons. For example, in a spherical metallic particle of
radius R ≪ λ0 described by the Drude permittivity ϵ = 1 − ωp

2/
ω(ω + iτ−1), inserting the polarizability αω = R3(ϵ − 1)/(ϵ + 2)
into eq 15, we find the relation ωp

2 = (3e2/me)(Ne/R
3), which

shows that Ne coincides with the number of valence electrons:
all valence electrons participate in the dipolar resonance of a
Drude-metal sphere at frequency ωp/√3. For a graphene
island, we use instead the polarizability given by eq 8. Upon
direct integration of eq 15, and after using the exact relation eq
9, we find the effective density of charge carriers participating in
the plasmons to be given by

=n nneff F (16)

where n is the doping density and nF = (1/π)(mνF/ℏ)
2 ≈ 2.4 ×

1015 cm−2 (notice that nF has the same order of magnitude as
the density of carbon atoms, nC = 4/(3(3a2)1/2 ≈ 3.8 × 1015

cm−2, where a = 0.1421 nm is the C−C bond distance). This
remarkably simple relation holds for arbitrarily shaped
nanostructures in the Drude approximation (eq 3). It
essentially explains that the effective density of charge carriers
neff contributing to the plasmon is substantially higher than the

doping density n: the effect of a relatively small number of
doping electrons or holes (e.g., one doping carrier per every 52
atoms for a Fermi energy of 1 eV) is amplified as a result of
both the vanishing of the density of states at the Dirac point
and the linear dispersion relation, in contrast to conventional
plasmonic materials such as gold, in which the density of states
takes a substantial value at the Fermi level and the outermost s
valence electrons exhibit a nearly parabolic dispersion relation.
We put these concepts to the test for narrow ribbons in

Figure 3c,d (right scales), where we represent neff as a function
of ribbon width D and Fermi energy. The results of eq 16 (right
scale, solid curves) are compared with values obtained from the
f-sum rule (eq 15) by integrating the plasmon peak of the
spectra calculated using a quantum-mechanical approach
(symbols, see Methods). We observe deviations from eq 16
that increase in magnitude with decreasing D. However, neff is
larger than the carrier density n (dashed curves) in all cases
considered. Incidentally, the leading dipole peak in the
calculated spectrum of Figure 2b (solid curve) accounts for
∼85% of neff when integrated through eq 15; this roughly
explains a similar reduction in the observed height with respect
to the analytical ribbon model (dashed curve) in which the
entire plasmon weight is placed in this mode.

■ TOWARD GRAPHENE PLASMONICS AT VISIBLE
AND NEAR INFRARED FREQUENCIES

Graphene plasmons have been so far observed at mid-IR and
lower frequencies.14−22 It is however expected that their
extension toward the vis-NIR enables unprecedentedly fast
optical tunability in this spectral range, with high potential
impact on telecommunications technologies. Since the plasmon
frequencies scale as (EF/D)

1/2 with the Fermi energy EF and the
size of the structure D (see eq 7), an obvious way of achieving
vis-NIR graphene plasmons consist in elevating EF and
reducing D. Next, we explore some possible realizations of
these prescriptions.

Extreme Electrostatic Doping. In typical electrostatic
gating configurations, the graphene accumulates charge carriers
by acting as one of the two plates of a capacitor, separated from
the other plate by a dielectric. A simple method to increase the

Figure 4. Geometrical enhancement of electrostatic doping. (a) Concentration of dopping charges in a graphene layer of small filling fraction f = D/
a. The figure represents a ribbon array that acts as a top gate and that holds the same total charge (+) as the bottom gate (−). Electrical contact to
the ribbons must be provided, for example by connecting them to an extended, gated graphene island at a large distance (≫a,d) from the region
schematically depicted in the figure. (b) Average charge-carrier density ⟨n⟩ on a planar ribbon (on the surface of a circular tube) of width (diameter)
D as a function of its distance d to a planar gate. We normalize ⟨n⟩ to n0, the density on each of the two plates of an infinitely extended planar
capacitor separated by a distance D (i.e., n0 = ϵV/(4πeD), where ϵ is the permittivity of the material mediating between all gates and V is the bias
potential). We compare the tube density with the exact D/d → 0 limit n = 2n0/log(4d/D), as obtained from the method of images (broken curve).
(c) Relation between carrier density and Fermi energy for extended graphene, as well as for ribbons and single-wall carbon nanotubes (CNTs). The
latter are extracted from a TB description of the electronic bands (see Methods).
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doping density consists in patterning the graphene with a small
in-plane carbon filling fraction f, as shown in Figure 4a. For a
periodic pattern of small period compared with the distance to
the other gate, the average charge density in the graphene plane
should be roughly independent of f, but as this charge is only
supported by the conducting carbon layer, the doping density
in the graphene becomes n/f, where n is the density obtained
with an unpatterned gate. Realistically, we can consider an array
of lithographically patterned ribbons of width D = 20 nm,
spaced with a period of 200 nm (i.e., f = 0.1) and placed at a
distance d of a few hundred nanometers from a planar gate.
Considering that Fermi energies as high as EF ≈ 1 eV have been
achieved using top-gate electrical doping in extended
graphene,13 this strategy would boost the Fermi energy to
EF/√f ∼ 3.2 eV. Using the above scaling law for ribbons (eq
14) and assuming the graphene to be supported on an ϵ = 2
substrate, we find a plasmon at a NIR photon wavelength ∼1.4
μm. Incidentally, at this high level of doping, the nonlinearity of
the electronic band structure becomes relevant.
Additionally, this approach could be reinforced by operating

at a high chemical-doping base point, whereby the graphene
Fermi energy could be doped above 1 eV in the absence of any
bias,97 while gating would be used to modulate EF around this
point.
In a similar fashion, the average doping density of an

individual graphene ribbon in the d ≫ D limit is ∝ n0/log(d/
D),91 where n0 = ϵV/(4πeD) is the density in a planar capacitor
with a separation D between the gates. In this limit, the level of
doping is controlled by the ribbon width D, so that high
densities can be achieved without suffering electrical breakdown
because the ribbon and the planar gate are separated by a large
distance d. We illustrate this possibility in Figure 4b for both
ribbons and tubes. At a distance d ∼ 100 D, the doping density
still reaches values comparable to ∼n0. Moreover, as the electric
field is high in the proximity of the ribbon (tube), it must be
weaker near the planar gate compared with the uniform field
inside a planar capacitor for the same bias potential V and
separation d between the gates. Therefore, one would expect
that V could be raised without causing breakdown to at least a
similar level as for a conventional planar capacitor of separation
d. This results in a d/D-fold increase in doping density of the
ribbon (tube), or equivalentely, a (d/D)1/2-fold increase in EF.
Fermi energies as high as a few electronvolts seem to be within
reach following this prescription. Incidentally, the scaling EF ∝
(n)1/2 works reasonably well for EF < 2 eV with D down to the
nanometer range, even when a proper account of electron
bands is taken into consideration in single-layer ribbons or
single-wall tubes (see Figure 4c).
An intriguing situation might be encountered when the

doping charge per carbon atom is comparable to unity. In
particular, considering the results of Figure 4b, for a D = 10 nm
ribbon embedded in an ϵ = 10 dielectric at a distance d = 1 μm
from a planar gate with a 500 V bias relative to the ribbon, the
doping charge reaches a value of 0.24 carriers per carbon atom.
A nonlinear electrostatic regime is then achieved, with is made
even more dramatic due to the 1/√x divergence of the doping
charge with decreasing distance x to the graphene edges.91

Plasmons in Narrow Ribbons and the Effect of Edge
Damping. In a recent study, plasmons in graphene nanorings
were observed down to a wavelength of ∼3.7 μm.19 The rings
were doped to EF ≈ 0.8 eV and placed in an ϵ ∼ 2 environment.
More precisely, this was the antibonding plasmon mode, which
shows up at an energy similar to the dipole plasmon of a ribbon

with similar width (eq 14). This required to cut the ring with a
challenging ∼20 nm width using electron-beam lithography.19

Narrower graphene ribbons, which can be grown on vicinal
surfaces,98 selected using colloid chemistry methods,99 and also
synthesized via self-assembly of organic molecules,100,101

constitute a natural way of pushing plasmons further toward
the vis-NIR using a scalable bottom-up approach.
For such small sizes, the orientation of ribbon edges becomes

critical because zigzag edges can broaden the plasmons
enormously, as shown through quantum-mechanical simula-
tions.41 Edge damping is thought to be caused by the presence
of zero-energy electronic edge states, and it is particularly active
when the plasmon energy Ep is above EF, so that decay through
excitation of those states becomes physically possible. If zigzag
and armchair edges are mixed, such as in graphene disks, edge
damping takes on even for Ep < EF,

41 as high-momentum
transfers are then favored, thus reducing the effective size of the
optical gap (see Figure 1f). However, ribbons with uniform
edges constitute clean systems on which edge damping can be
prevented by having Ep < EF.
Figure 3a shows that modulation of the graphene plasmon

energy Ep is possible in both armchair and zigzag ∼5 nm
ribbons. For EF > 1 eV, we have Ep < EF, and as anticipated,
edge effects play a minor role, so that both types of ribbons
produce similarly narrow and intense absorption features. By
contrast, for EF < 1 eV, edge damping switches on in zigzag
ribbons. A similar conclusion can be extracted upon inspection
of ribbons of different widths (see Figure 3b): when Ep is
pushed above EF = 1 eV by narrowing the ribbon width, zigzag
ribbons produce less intense plasmons.
Overall, we conclude that plasmons in narrow graphene

ribbons can be modulated at vis-NIR frequencies and produce
absorption cross sections comparable to the graphene area.
Incidentally, we have used a very conservative estimate of the
intrinsic width in Figure 3, corresponding to a mobility of only
μ = 66 × (EF/eV) cm

2/(V s)). As the height of the absorption
peaks is proportional 1/μ, much higher cross sections are
expected in practice, possibly reaching several times the
graphene area.

Toward Molecular Plasmonics. Graphene quantum dots
with diameters D < 10 nm and below have been synthesized by
resorting on chemical methods rather than lithography.102

Now, assuming a doping level EF = 1 eV and an ϵ = 2 host
medium, these structures should sustain plasmons down to
∼700 nm light wavelength, according to the above scaling law.
For such small diameters, finite size, and edge effects are
predicted to dramatically damp the plasmons,41 unless the dot
edges are preferentially armchair, rather than zigzag.42

However, control over edge orientations is rather limited, and
so is size selection through filtering and dialysis. A similar lack
of control over edges is encountered in nanometer-sized
graphene quantum dots obtained from fullerenes.103

Alternatively, chemical synthesis allows producing large
polycyclic aromatic hydrocarbons (PAHs),104 which can be
regarded as truly nanometer-sized graphene islands with better
control over size, edge orientation, and morphology. These
molecules have been recently postulated as a viable alternative
to engineer tunable devices in the vis-NIR spectral region:90

their collective electron excitations are of similar nature as
graphene plasmons and can equally be tuned through electrical
gating. The plasmonic character of these excitations is revealed
by the important role played by electron−electron inter-
actions.90 Nonetheless, gating these molecules constitutes an
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experimental challenge that must be overcome in order to
achieve electro-optical tunability.
Following the ideas introduced in ref 90, we analyze in Figure

5 the low-energy optical resonances of small armchair graphene
nanoislands in neutral and ionized states. The spectra are
calculated using the TB + RPA approach (see Methods), which
produces results in qualitative agreement with first-principles
simulations.90 The 90 carbon-atom nanotriangle considered in
Figure 5a exhibits a ∼2.5 eV absorption gap in its neutral state
(Q = 0). However, when ionized, an absorption feature

emerges in this gap, which evolves toward higher energies as
the number Q of additional electrons or holes increases, just
like we have predicted from classical theory for larger
structures. This evolution is accompanied by a much weaker
modulation of the second absorption peak, which is however
moving toward lower energies with increasing Q. We also find
that the magnitude of the optical gap decreases with increasing
triangle size (see Figure 5b, showing spectra for structures
ranging from triphenylene, consisting of 18 carbon atoms, to a
330 carbon-atom triangle), while the lowest-energy plasmon

Figure 5. Molecular plasmons in nanographene. (a) Absorption by an armchair graphene triangle spanning h = 5 hexagons per side and with
different numbers of charge carriers Q = 0−6. (b) Same as (a) for h = 2 (tryphenylene) to h = 10 in neutral (Q = 0, dashed curves) or singly charged
(Q = 1, solid curves) states. Spectra corresponding to different h values have been vertical offset for clarity. The absorption cross-section is
normalized to the graphene area (31/23 Na2/4, where N = 3h(h + 1) is the number of carbon atoms and a is the C−C bond distance). All
calculations are performed with the TB+RPA approach (see Methods41) assuming an intrinsic damping ℏτ−1 = 0.1 eV.

Figure 6. Tunable vis-NIR plasmons in doped carbon nanotubes. (a) Single-wall carbon nanotube (CNT) subject to external illumination with
polarization perpendicular to the tube. (b) Plasmon energy (left scale) and peak absorption (right scale) as a function of CNT diameter. (c)
Absorption spectra for a (20,20) tube (diameter D = 2.7 nm) doped to different Fermi levels EF. (d) Absorption spectra for armchair CNTs of
different size and EF = 1.5 eV. (e) Absorption spectra of three different CNTs of similar diameter but different electronic structure (see electronic
bands over the first Brillouin zone in the upper insets, where the occupied levels are shown by a shaded area up to an energy EF = 1.5 eV). The
absorption cross-section is normalized to the projected area of the tubes, while the intrinsic optical width is taken as ℏτ−1 = 0.1 eV in all cases. Full
TB + RPA quantum mechanical simulations (solid curves, see Methods) are compared with analytical local-RPA theory (broken curves, eq 17) in (c,
d).
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experiences a redshift also similar to plasmons in larger
graphene islands. A similar evolution with size and Q is
observed when considering larger structures, which are
quantitatively describable through classical theory above ∼10
nm in size,41 thus making a smooth transition between the
regimes of molecular excitations and graphene plasmons. From
a practical viewpoint, the switching on and off of this low-
energy feature from the neutral to the singly ionized state
constitutes a potentially viable approach to achieve optical
modulation in the vis-NIR.90

Plasmons in Doped Carbon Nanotubes. Carbon
nanotubes (CNTs) are free from the damaging effects
produced by edges, thus offering an attractive alternative to
obtain high-energy tunable plasmons. For sufficiently large
diameter D, the optical properties of a single-wall CNT should
be describable as those of a circular cylinder characterized by
the same surface conductivity σ as planar graphene, because the
effects of curvature along the perimeter are expected to play a
minor role in that limit. Focusing on external light polarized
across the CNT (Figure 6a), direct solution of Poisson’s
equation yields (see Methods)
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for the absorption cross-section normalized to the projected
tube area. The last expression in eq 17 is obtained in the Drude
model for σ, to be compared with the above analogous result
for ribbons (eq 13). We thus conclude that CNTs present
similar tunability properties as ribbons of comparable width D,
with the plasmon frequency shifted from 4ωg in ribbons (eq
13) to 2(π)1/2ωg in CNTs (eq 17), where ωg = (e/ℏ)(EF/
πD)1/2.
The prediction of eq 17 is remarkably close to full quantum-

mechanical TB + RPA theory (see Methods41), as Figure 6
demonstrates. In particular, by inserting eq 2 (i.e., the local-
RPA model for σ) into eq 17, we find extinction spectra (Figure
6c, dashed curves) in excellent agreement will quantum-
mechanical TB + RPA calculations (Figure 6d, solid curves),
except at low doping levels, for which local-RPA produces
larger cross sections because it does not take into account the

Figure 7. Enhanced optical absorption in periodic arrays of ribbons. (a) Scheme of a ribbon array sandwiched between media of permittivities ϵ1 and
ϵ2. The array is subject to normal-incidence illumination with polarization across the ribbons. (b) Absorbance by a self-standing array (ϵ1 = ϵ2 = 1) as
a function of normalized light wavelength and Fermi energy. (c) Extinction (=1 − transmittance) of a supported array (ϵ1 = 1, ϵ2 = 2). The Drude
conductivity is assumed in both (c) and (d), where the dashed curves show the plasmon dispersion of an individual ribbon, while the right and upper
scales correspond to a specific ribbon width D = 100 nm. (d) Reflectance (lower curves) and transmittance for arrays of D = 13 nm supported
ribbons with different periods a (see labels) and two different models for the conductivity. (e) Absorption for the same ribbons as in (d), supported
on glass and illuminated from the glass side. Regions of total absorption are signaled in black above the threshold for total internal reflection (TIR).
Light is incident in the plane parallel to the ribbons and perpendicular to the glass surface, with the electric field oriented across the ribbons. All
calculations are based on a dipole model for the ribbons (see eq 19), assuming a quality factor of 50.
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full nonlocal dependence of electron−hole-pair excitations.
Similar to ribbons, we find these additional damping effects to
be active for plasmon energies Ep > EF.
In Figure 6c, we analyze the evolution of absorption spectra

as a function of doping for a (20,20) CNT, while Figure 6d
illustrates the size dependence for fixed doping. Despite the
large intrinsic damping that is assumed (ℏτ−1 = 0.1 eV), we
obtain absorption cross sections comparable to the projected
area of the tubes. As predicted above, the plasmon frequency
exhibits a ∝(EF/D)

1/2 behavior, while the peak cross-section
increases both with EF and with D (see Figure 6b).
A drawback of CNTs for electronics applications is the

difficulty in synthesizing large quantities of them with the same
chirality (n,m). The tubes are metallic or semiconducting
depending on the value of n − m. By contrast, the plasmonic
properties do not seem to depend so much on chirality:
plasmons are roughly controlled by the average electron density
when their energies are well above the gaps. Indeed, we find
that tubes of approximately the same diameter but different
chirality feature plasmons of similar energy and strength (see
lower part of Fiure 6e), despite their very different band
structures (upper insets). In particular, we compare in Figure
6e the absorption spectra of a small-gap semiconducting (21,0)
tube, a metallic (12,12) tube, and a moderately semiconducting
(20,0) tube (diameters ∼ 1.6 nm). Local-RPA dielectric theory
(dashed curves) produces similar results for all three of them,
although more realistic TB + RPA simulations reveal a blue
shift in the semiconducting tube. Despite the demonstrated
ability to perform spectroscopy on individual CNTs,105

including the absolute determination of absorption cross
sections,106,107 CNT ensembles should be simpler to integrate
in actual devices.108 In this respect, the present results, and in
particular the small dependence of the plasmons on chirality,
provide a solid basis to postulate size-selected CNTs as a viable
platform for light modulation in the vis-NIR.

■ FURTHER DIRECTIONS

Perfect Tunable Optical Absorption. Prospects for
several promising optical applications of graphene, including

light harvesting, spectral photometry,63,64 and optical modu-
lation,61 rely on achieving a high level of absorption by the
single-atom carbon layer. Unfortunately, undoped graphene is a
poor absorber, characterized by a nearly constant absorbance
roughly equal to πα ≈ 2.3%.12 Nanostructured undoped
graphene absorbs even more poorly, as shown by eq 11 (see
also Figure 8c). Graphene plasmons provide a way of
enhancing absorption, with the additional advantage of being
electrically tunable, so that the spectral region of high
absorbance can be scanned over the range of interest.
Complete optical absorption has been predicted for periodic

arrays of graphene disks under the condition that the
absorption cross-section of each disk is comparable to the
unit cell area.49 Progress toward the implementaion of this
concept has been made through experiments showing electro-
optical modulation of plasmonic absorption in disk and ring
arrays in excellent agreement with theory,19 while >30%
measured absorption has been recently reported.31

The absorption of arrayed graphene ribbons has been studied
in detail following modal expansions50,51 and finite-difference52

computation methods. Here, we discuss absorption in these
structures through analytical methods, which combine the
results discussed above for individual ribbons with the methods
developed to analytically investigate similar phenomena in 2D
arrays of finite graphene islands.19,49 In particular, we discuss
perfect absorption in arrays of graphene ribbons periodically
arranged with period a along the interface between two media
of real refractive indices n1 = √ϵ1 and n2 = √ϵ2. This analysis
can be straightforwardly applied to CNTs as well. For
simplicity, we focus first on normally incident light coming
from medium 1 and polarized across the ribbons, as shown in
Figure 7a. The ribbons are described through their polar-
izability per unit length αω/L (see eq 12). Following a similar
approach as in previous studies,19,49 we find the following exact
result (within the dipole model) for the transmission and
reflection coefficients (see Figure 7a):

Figure 8. Thermally activated transient plasmons. (a, b) Real and imaginary parts of the conductivity of graphene for different temperatures and
doping levels (see labels in (a)). (c) Absorption cross-section normalized to graphene area for undoped ribbons as a function of the width to light-
wavelength ratio D/λ0 (see eq 11). (d) Electron temperature reached by undoped extended graphene as a function of laser pulse fluence. (e)
Absorbance spectra obtained from eq 19 for a self-standing array of D = 10 nm graphene ribbons under the same doping and temperature conditions
as in (a). We use the local-RPA conductivity (i.e., eq 2) with an intrinsic damping ℏτ−1 = 0.05 eV in all cases (i.e., this is equivalent to a mobility of
132 × (EF/eV) cm

2/(V s)).
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where S = (4π2/aλ0)[2/(n1 + n2)] and G = (g/a2)[2/(ϵ1 + ϵ2)]
+ iS, whereas g represents a lattice sum over dipole−dipole
interactions, which in the long-wavelength limit (λ0 ≫ a)
reduces to g = 2π2/3. From here, we obtain the absorbance as
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In what follows, we use the single-mode approximation for the
graphene polarizability αω/L = D2/(16 − iωD/σ) (see
discussion of eq 13 above), with σ calculated from different
models (see captions and labels in Figures 7 and 8).
Obviously, the absorbance is enhanced near the frequency of

the individual ribbon plasmon (Figure 7b,c, dashed curves),
although interaction across the lattice produces a significant
redshift. Inserting eq 18 into eq 19, the absorbance becomes a
function of the complex variable t12, which takes a maximum
value of n1/(n1 + n2) under normal incidence from medium 1.
This value can be reached under so-called critical-coupling
conditions,49 which are actually produced with graphene
ribbons at a point within the highlighted black region of high
absorbance in Figure 7b. Incidentally, inclusion of interband
transitions produces a redshift (cf. dashed and solid curves in
Figure 7d), in agreement with recently reported hydrodynamic
simulations.46 In a more realistic configuration, with graphene
supported on a substrate, large extinction (=1 − transmittance
= 1 − (n2/n1)|t12|

2) is also predicted (see Figure 7c), down to
NIR wavelengths for narrow ribbons (Figure 7d).
The conditions for which total absorption can be obtained

through plasmon excitation in arrays of graphene islands have
been identified in a previous study,49 illustrated by examples
based on the so-called Salisbury screen configuration. Here, we
present further results of total absorption, using ribbons instead
of finite islands. In particular, we predict this effect to take place
under total internal reflection conditions (see Figure 7e,
calculated from an extension of the above expressions to
oblique incidence, as described in Methods), for which the
transmission channel is already suppressed. We observe total
absorption for a wide range of spacing parameters a, thus,
indicating that the effect is robust.
Ultrafast Graphene Optics: Transient Plasmons.

Transient plasmons produced by optical heating in graphene
islands may provide a viable solution to extend the plasmonic
response of this material to the vis-NIR. The idea is as follows:
(i) an off-resonance femtosecond pulse can be used to optically
pump the carbon layer, thus, creating a heated valence electron
gas, which typically takes a few tens of femtoseconds to reach
thermal equilibrium at a temperature as high as several
thousand degrees, followed by slow heat diffusion through
the thermal conductivity of the surrounding materials;57,109−111

(ii) during the subpicosecond time window over which the
electron gas is at an elevated temperature, a second spectrally
tuned probing pulse can excite plasmons of similar nature as the
thermoplasmons predicted for extended undoped graphene.112

We should note that transient optical effects have been
extensively studied in the past, including the ultrafast dynamics
of plasmons in nanoparticles,113 the metallic behavior in
optically pumped semiconductors,114 the transient absorption
of molecules115 and graphene,111 and the nonlinear refractive

index of graphene oxide.116 We concentrate here on transient
plasmons in graphene, which offer a unique opportunity
because of the relatively low electron heat capacity of this
material (i.e., as a result of the Dirac-cone electronic structure, a
realistic pulse fluence can produce extremely high electron
temperatures, as we discuss below).
A heating laser pulse of fluence F transfers an energy Q =

σabsF to the graphene electrons. Now, the relation between Q
and the electron-gas temperature T at thermal equilibrium can
be worked out from the electron dispersion relation, which we
assume to be the same as in extended graphene for an order-of-
magnitude estimate of the Q(T) function. Considering that the
electron (and hole) energies involved are close enough to the
Dirac point as to assume a linear dispersion relation (i.e., kBT <
2 eV) and further assuming an equilibrium Fermi-Dirac
distribution of electron (hole) energies, we find Q =
sA(kBT)

3/(ℏνF)
2, where s = (2/π)∫ 0

∞θ2dθ/(1 + eθ) ≈ 1.15
and A is the graphene area. This result coincides with the in-
plane thermal electron energy of graphite,117,118 which should
be a reasonable approximation for high T. From this analysis,
assuming σabs = παA (see Figure 8c), we find a temperature T =
104 K with F ≈ 12 J/m2 (see Figure 8d), which is a level of
fluence commonly used in ultrafast experiments. It should be
noted that, although the electron gas reaches a high
temperature, the carbon lattice has a much higher thermal
capacity, and consequently, the entire system ends up at a
substantially lower temperature at thermal equilibrium. Using
measured data for the heat capacity of graphite,119 the
relaxation of the 104 K electron gas is estimated to produce
just a 60 K increase in the lattice temperature starting from
ambient conditions. Therefore, heating damage should be
negligible. We have obviously neglected diffusive and radiative
cooling, which should play a relatively small role over a
subpicosecond time window following electron thermalization.
Also, we have ignored optical phonons, which couple strongly
to hot electrons and holes57 and need to be included as a factor
that reduces the energy deposited on the thermalized valence
band; however, this factor can be easily compensated by
increasing the pumping intensity. Incidentally, electrons and
holes provide similar contributions to the optical response of
the heated valence band, due to the symmetry of the Dirac
band structure in graphene.
The intraband term of the local conductivity (eq 2) can be

written in closed-form when the electron gas is at thermal
equilibrium with a Fermi-Dirac energy distribution f E = 1/[1 +

e(E−EF
0)/kBT] at temperature T around a relaxed Fermi energy EF

0.
It just reduces to the Drude conductivity of eq 3, but with EF
substituted by a temperature-corrected Fermi energy84

= + + −E E k T e2 log(1 )E k T
F F

0
B

/F
0

B (20)

The increase in Fermi energy can be substantial for large T in
undoped graphene (EF

0 = 0). The Drude conductivity
corresponding to values of EF obtained from eq 20 for
temperatures T = 5−20 × 103 K (or equivalently, kBT = 0.43−
1.72 eV) is represented in Figure 8a,b (dashed curves) and
compared with the full local-RPA conductivity (solid curves,
calculated from eq 2 for finite T and EF

0 = 0). The imaginary
part of σ (Figure 8a) is very similar in both models, thus,
indicating that the frequency at which thermoplasmons are
expected should be well described by eq 7. However, damping
associated with electron−hole-pair transitions in the local-RPA
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model produces larger values of Re{σ} (i.e., optical losses),
which arise from the interband term in eq 2.
Considering an array of 10 nm ribbons (Figure 8e), we find

the absorbance features predicted with the local-RPA
conductivity for EF

0 = 0 and finite T (solid curves) to be
broadened with respect to the absorbance for T = 0 using the
values of EF given by eq 20 (dashed curves), but still leading to
observable plasmon resonances. Notice that although the
intrinsic damping is set to ℏτ−1 = 50 meV, the strong dispersion
of σ broadens the dashed-curve spectra in Figure 8e (i.e., for
finite EF and T = 0) to 65, 65, and 74 meV (from left to right),
whereas thermal effects produce solid-curve spectra (i.e., for
finite T and EF = 0) with widths of 212, 165, and 147 meV. In a
practical experiment, a finite distribution of ribbon widths in a
self-assembled array98,100,101 would introduce further broad-
ening. Alternatively, given the large expected levels of
absorption, transient plasmons should be observable in
individual structures. A more detailed account of the
momentum dependence of σ beyond local response theory
could introduce some extra broadening, although the results of
Figure 3 indicate that this effect should be minor. Additionally,
the electron gas temperature varies over a subpicosecond time
scale, thus producing further broadening due to the change in
the plasmon energy during its lifetime (e.g., the lifetime is ∼5 fs
for the red solid spectrum of Figure 8e, which is a small interval
compared with recently measured relaxation times,57 and
therefore, this should produce just a small broadening).

■ OUTLOOK AND PERSPECTIVES
Graphene has opened new perspectives in plasmonics research
due to a combination of several appealing properties. From a
practical viewpoint, its resistance to ambient conditions
(particularly when encapsulated in between two dielectrics),
its high degree of crystalinity, and its excellent electrical
properties are well suited to the design of optoelectronic
devices. Additionally, this material presents large optical
nonlinearities,67,68,120 as well as extraordinary electro-optical
tunability.13 In a more speculative front, the extreme confine-
ment of graphene plasmons relative to the light wavelength
gives rise to strong interaction with neighboring optical
emitters, such as molecules and quantum dots,44 which has
prompted several suggestions for the exploitation of this robust
material to realize quantum optics phenomena in the solid-state
environment of integrated gating devices.65,121−123

However, graphene faces important challenges that must be
overcome before it can legitimately claim its privileged position
among the zoo of plasmonic materials. An important challenge
concerns the fabrication of patterned graphene structures with
better control over shape and quality. While the number of
methods that are becoming available to synthesize this
atomically thin material is continuously growing,124 a detailed
tailoring of atomic edges will likely rely on bottom-up
approaches, among which decoration of vicinal surfaces98 and
chemical self-assembly100,101,103,125 appear to be promising
solutions. Alternatively, extended graphene can be inhomoge-
neously doped by patterning an underlying backgate,43 giving
rise to confined and guided plasmons, as well as plasmon
trapping at p−n junction lines.126

In- and out-coupling to external light is another challenge.
Progress in the former has been made through the realization
that plasmon-assisted complete optical absorption is possible
upon patterning monolayer graphene,49 followed by the recent
experimental observation of high absorption.19,31 However,

light emission from plasmon modes is intrinsically limited by
their high degree of spatial confinement, which makes inelastic
attenuation the dominant decay channel. As a possible solution,
larger out-coupling to light could be achieved, with some
limitations,127 through placing the carbon structure in an
optical cavity in order to boost the density of optical states.
Graphene plasmons have been so far measured down to mid-

IR wavelengths, including a spectacular full-octave range of
electro-optical tunability in the mid-IR.19 Light modulation
through graphene gating has also been observed down to vis-
NIR frequencies in the optical plasmonic response of
neighboring metal nanostructures,72−74 although the resulting
degree of modulation is rather limited. This situation presents
yet another challenge: the extension of octave-scale graphene
confined-plasmon tunability to the vis-NIR spectral region,
which could have massive impact on optical signal processing
and telecommunications technologies. Some possible solutions
to this problem have been put forward in the preceding
sections.
Graphene is expected to exhibit a low level of inelastic optical

losses compared with traditional plasmonic materials. We have
discussed above the leading mechanisms that are thought to be
responsible for such losses. However, an accurate experimental
and theoretical determination of the ultimate intrinsic level of
losses in high-quality graphene is still missing, in spite of some
recent successes on both fronts.19,20,60,85 This will obviously
require further improvement of fabrication methods, alongside
careful analyses of the relative importance of the noted
mechanisms.
Advances in all these challenges may transform some of the

widely advertised expectations raised by the plasmonics
community into a fruitful reality. For example, in applications
to optical sensing. Actually, IR plasmons cover the character-
istic frequency range of molecular vibrations. Given the large
enhancement of the optical field in their vicinities,48 graphene
nanostructures could be used to reduce the concentration
threshold for ultrasensitive molecular detection via infrared
absorption spectroscopy. Inelastic light scattering enhanced by
the graphene plasmon near-field is another possible strategy to
improve optical sensitivity.
Quantum optics with graphene could rely on the use of solid-

state two-level emitters such as NV centers in diamond, which
could undergo quantum strong-coupling phenomena when
resonantly coupled to graphene plasmons.44,65 Small graphene
islands could actually act as two-level systems themselves, in
which quantum nonlinearity produced by the combination of
intrinsic graphene nonlinearity and strong plasmon field
confinement has been predicted to create significant two-
photon interactions.123

In a different front, the detailed mechanisms responsible for
photoelectric generation in graphene are still unclear, with both
direct charge-carrier separation and the thermoelectric effect
contributing to the light-induced electrical signal.128 In this
context, extrinsic metal plasmons have been used to increase
the photoresponse of graphene129,130 and demonstrate a
nanoscale spectrophotometer.63 The use of intrinsic graphene
plasmons to this end could clearly allow us to spectrally resolve
the incident light intensity by electrically tuning the plasmons
in a graphene nanostructure, with some initial advances already
made in this direction.131 This seems to be a realistic approach
toward a nanoscale spectrophotometer, which could operate
down to the mid-IR spectral range, and possibly also in the vis-
NIR if graphene plasmons are successfully pushed toward
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higher frequencies. Incidentally, nanoscale tunable lighting
devices could also be made of graphene based upon thermal
emission, particularly in the IR, whereby the emission spectrum
is proportional to the light absorbance (Kirchhoff’s law), which
is thus enhanced at the plasmon frequencies.
These ideas configure the exciting emerging field of graphene

plasmonics. But perhaps the true impact of this activity lies in
the realization that ultrathin materials can sustain tunable
collective optical oscillations. The quest for such new materials
has only started,132,133 with new exciting results already
observed for plasmons in topological insulators.134

■ METHODS
Quantum-Mechanical TB + RPA Simulations.We follow

a procedure described elsewhere41 to simulate nanostructured
graphene by using its tight-binding (TB) electronic structure as
input of the RPA susceptibility. This approach is computation-
ally inexpensive and yields results in good agreement with state-
of-the-art ab initio methods.90 The hopping parameter t = 2.8
eV is taken from a fit to both STM measurements135 and first-
principles simulations.136 Notice however that the Fermi
velocity78 νF

TB = 3ta/2ℏ extracted from t and the C−C bond
distance a is ∼10% lower than the electronic-band measured
velocity137 νF = 106 m/s. We use this latter value for νF to relate
EF = ℏνF(πn)

1/2 to the carrier density n, but we maintain the
above value of t in our TB + RPA simulations. The CNT band
structures (Figure 6e) and EF(n) relations (Figure 4c) are
obtained by counting TB states, so a factor νF/νF

TB is applied to
the TB calculated EF in Figure 4c to compensate for this
discrepancy. For simplicity, the hopping parameter is assumed
to be the same for all carbon bonds, which should be a
reasonable approximation when the edges are passivated with
hydrogen atoms.
Classical Electromagnetic Simulations. We follow a

procedure sketched elsewhere47 to simulate the optical
response of graphene ribbons using as input the frequency-
dependent local conductivity σ(ω). More precisely, we describe
the graphene through a square array of polarizable elements
with in-plane polarizability given by α = 1/[g/a3 − iω/(a2σ)],
where a is the array period (small compared with the ribbon
width) and g = 4.52 results from the dipolar interaction
summed over the lattice. With this choice of the polarizability,
the reflection coefficients of an infinitely extended array
coincide with those of homogeneous graphene in the
electrostatic limit for both s and p polarizations, provided a is
sufficiently small. In practice, we obtain converged results for a
∼ 1 nm. Using the exp(ik∥z) spatial dependence of the fields
along the ribbon direction z for fixed parallel wave vector k∥, we
can carry out the lattice sum along z and reduce the self-
consistent system to just one row of polarizable elements across
the ribbons. The results of Figure 2 are converged using ∼100
elements and the computation of the entire figure takes only a
few seconds using a personal computer. This method is in
excellent agreement with numerical simulations using the
boundary-element method for graphene ribbons described as
thin slabs.44

Analytical Model for the Absorption Cross-Section of
CNTs. We consider a single-wall CNT of small diameter D
compared with the light wavelength, illuminated under the
conditions depicted in the upper inset of Figure 6a. We express
the optical electric field E = −▽ϕ in terms of the electrostatic
potential, which is ϕin = AR cos φ inside the tube and ϕout = −R
cos φ + (B/R) cos φ outside, where (R,φ) are polar coordinates

in the plane normal to the tube. This is the most general
solution of Poisson’s equation for illumination with an external
potential −R cos φ, which corresponds to an incident unit
electric field along x. Here, A and B are constants that are
determined by the boundary conditions, namely, the continuity
of the parallel electric field, ∂φϕ

in = ∂φϕ
out, and the jump in the

normal electric field due to the surface current, ∂Rϕ
in − ∂Rϕ

out =
(16πiσ/ωD2)∂φφϕ

in. From here, we find the induced current to
reduce to Aσ sin φφ ̂, with A = −1/(1 + 4πiσ/ωD). Calculating
the far field produced by this current with the help of the
retarded Green function of the electromagnetic field, and using
the optical theorem, we finally obtain the absorption cross-
section of eq 17.

Absorption by an Array of Ribbons under Oblique
Incidence. We consider two special incidence conditions (see
Figure 9): (1) incident light wave vector and surface-projected

electric field both perpendicular to the ribbons long axis (p
polarization); and (2) incident electric field parallel to the
surface and directed across the ribbons (s polarization). Light is
coming from medium 2 in both cases. In particular, Figure 7e is
obtained for s polarization. Describing the ribbons through
their polarizability per unit length αω/L and following the
analytical methods that we introduced elsewhere,138 we find
expressions for the resulting reflection and transmission
coefficients similar to those already obtained for 2D periodic
arrangements of graphene islands.19 More precisely,
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Figure 9. Oblique incidence conditions here considered: external
plane wave with wave vector in the yz plane and electric field along x (s
polarization, left); and incident wave vector and external field both in
the xy plane (p polarization, right). Medium 1 (medium 2) is above
(below) the ribbon array.
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in media j = 1, 2 for an angle of incidence θ, a is the lattice
period, and g = 2π2/3 (see above). Obviously, we are neglecting
diffracted beams because the spacing a is assumed to be much
smaller than the light wavelength. We should stress that αω is
the electrostatic polarizability. The above expressions are
derived under the assumption that ϵj and k⊥j are real in both
media j = 1,2. They are also valid under total internal reflection
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These conditions are actually considered in Figure 7e.
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■ GLOSSARY
doping - in this work, doping refers to electrical charging
upon injection of charge carriers (electrons or holes);
gating - connecting graphene to metallic electric contacts in
order to apply voltages used to inject charge carriers;
nonlocal - referring to the breakdown of the local
approximation (i.e., the assumption of a frequency depend-
ent conductivity σ(ω));
optical modulation - the ability of modifying the optical
response by means of an external stimulus (e.g., by applying
a gate voltage);
plasmons - quanta of the collective electron oscillations in
metallic, graphene, or molecular structures;
transient plasmons - modes that can be excited by a probe
during the picosecond transient period over which a
graphene nanostructure is at an elevated temperature
following optical heating by a femtosecond laser pulse.
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binding description of graphene. Phys. Rev. B 2002, 66, 035412.

(137) Bostwick, A.; Ohta, T.; Seyller, T.; Horn, K.; Rotenberg, E.
Quasiparticle dynamics in graphene. Nat. Phys. 2007, 3, 36−40.
(138) García de Abajo, F. J. Colloquium: Light scattering by particle
and hole arrays. Rev. Mod. Phys. 2007, 79, 1267−1290.

■ NOTE ADDED AFTER ASAP PUBLICATION
This paper was originally published ASAP on February 11,
2014. Corrections have been made to text describing equations
10 and 12 and to unnumbered equations in the Methods
section. The corrected version reposted on March 19, 2014.

ACS Photonics Review

dx.doi.org/10.1021/ph400147y | ACS Photonics 2014, 1, 135−152152


